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On the power of quantum computation
By Umesh Vazirani

Computer Science Division, University of California, Berkeley, CA 94720, USA

This paper surveys the use of the ‘hybrid argument’ to prove that quantum correc-
tions are insensitive to small perturbations. This property of quantum computations
is used to establish that quantum circuits are robust against inaccuracy in the imple-
mentation of its elementary gates. The insensitivity to small perturbations is also
used to establish lower-bounds, including showing that relative to an oracle, the class
NP requires exponential time on a quantum computer; and that quantum algorithms
are polynomially related to deterministic algorithms in the black-box model.
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1. Introduction

Quantum computation is an exciting area that lies at the foundations of both quan-
tum physics and computer science. Quantum computers appear to violate the modern
form of the Church–Turing thesis, which states that any ‘reasonable’ model of com-
putation can be simulated by a probabilistic Turing machine with at most polynomial
factor simulation overhead. The first evidence that quantum computers violate this
thesis was given by Bernstein & Vazirani (1993, 1997), building upon earlier work of
Deutsch & Jozsa (1992). This was followed by an important group-theoretic quan-
tum algorithm by Simon (1994, 1997), and then by the remarkable result of Shor
(1994, 1997) showing that factoring and computing discrete logs are computable in
polynomial time on a quantum computer. In view of these results, it is natural to ask
whether quantum computers can solve all problems in the class NP (or NP∩ co-NP)
in polynomial time. Bennett et al . (1997) gave evidence that this question is unlikely
to be resolved without a major breakthrough in complexity theory, by showing that
relative to a random oracle, NP 6⊆ BQTIME(o(2n/2)). This result is the best possi-
ble, up to constant factors, since there is a matching upper bound that follows from
Grover’s (1996) quantum search algorithm. Boyer et al . (1996) obtain the exact con-
stants in the upper and lower bounds, thus exhibiting a tight bound on quantum
search. Bennett et al . (1997) also showed that relative to a random permutation
oracle NP∩ co-NP 6⊆ BQTIME(o(2n/3)).

As in all oracle lower bounds, the results of Bennett et al . (1997) are proved
by establishing a lower bound on the number of oracle queries that the algorithm
must make. More generally, in the black-box model, the algorithm is not given the
input explicitly, but is instead allowed to query bits of the input. The cost of the
algorithm on a given input is defined to be the number of queries to the input,
independent of the time spent by the algorithm between queries. Let D(f) denote
the number of queries made by a deterministic algorithm to compute a Boolean
function f : {0, 1}n → {0, 1}, and let Q(f) denote the number of queries made by a
quantum algorithm that computes f with error probability less by 1

3 . Recently, Beals
et al . (1998) introduced a new framework, involving polynomials, for establishing
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lower bounds in the black-box model; they proved a general result showing that
D(f) = O(Q(f)6). In this paper we prove the weaker bound D(f) = O(Q(f)8), and
sketch an outline of the D(f) = O(Q(f)6) result.

Finally we consider the question: how ‘reasonable’ is the quantum computation
model? There are several ‘unreasonable’ classical models of computation, in which it
is possible to factor numbers or even solve NP-complete problems in polynomial time
(see Shamir (1979) for a particularly delightful example). In each case, these models
rely on being able to carry out operations on numbers with exponentially many bits in
a single computational step. This is unrealistic, because in any implementation, such
a number must be represented as a physical quantity which we can manipulate with
only limited precision. Quantum circuits or quantum Turing machines are designed
to be discrete models of computation, except for the fact that in each case we must be
able to carry out a rotation through angle θ of a single qubit. Does this introduction of
a real number θ into the model make it ‘unreasonable’; i.e. to what accuracy must we
design our physical apparatus to carry out the ‘rotation through angle θ’? Bernstein
& Vazirani (1993, 1997) showed that in any quantum circuit with m gates, if each
rotation gate is accurate to within δθ 6 ε/4m then the output of the approximate
circuit is indistinguishable from the output of the ideal circuit except with probability
ε. We give a proof of this theorem. In fact, we use the same proof technique for all
the results in this paper. The technique is known as the ‘hybrid argument’ among
cryptographers. Using quantum error-correction techniques, fault-tolerance quantum
circuits can be created that are resilient to constant error in the rotation gates of the
circuit, independent of the size of the circuit (Aharanov & Ben-Or 1996; Gottesman
1997).

How does one explain the power of quantum computation? The dimension of the
Hilbert space associated with an n-qubit system is 2n. Therefore, just describing the
state of this system requires 2n complex numbers. Moreover, nature must update the
2n complex numbers to evolve the system in time. This is an extravagant amount of
work for nature to perform, even for systems consisting of as few as 200 qubits, since
2200 is larger than estimates for the number of particles in the universe. Although
this is part of an explanation, we can get further insights by considering our orig-
inal question more closely. We first observe that, even in classical physics, nature
performs computations which are capable of solving problems such as factoring and
satisfiability. The difficulty lies in our ability to harness this for useful computation.
For example, in classical physics, the state of a system with n degrees of freedom is
described by n real numbers. Moreover, nature updates these real numbers by per-
forming elementary operations, such as addition, upon them. As pointed out above,
models such as this, with infinite-precision (or even exponential-precision) arithmetic
are capable of carrying out tasks such as factoring or satisfiability in polynomial time
(Shamir 1979; Vergis et al . 1986). What distinguishes quantum computation from
classical computation is our ability to prepare the system to solve a computational
problem of our choice. If we try to build a classical device to carry out a desired
computation, the imprecision in the realization of the system effectively leaves us
with only a few bits of information per degree of freedom of the system. Therefore
we are effectively restricted to a cellular automaton or Turing machine. In the case
of quantum computation, our access to the computation performed by nature is
more subtle. When we perform an approximate rotation gate, the amplitudes in the
resulting superposition are inaccurate; but in a very correlated manner. The approx-
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imate transformation is still unitary: it is an approximation in that it is close to the
ideal transformation in operator norm. Theorem 2.2 shows that a moderate degree
of approximation in operator norm is sufficient to guarantee that the results of the
approximate circuit are close to the ideal circuit. Now imagine for a moment that
in the quantum mechanical case our access to the computation performed by nature
had been more coarse. Suppose that each time we carried out a quantum gate, we
could only specify the amplitudes in the resulting superposition accurate to within
1/k if we used effort proportional to k. It is not hard to show that in this case, too,
we are effectively restricted to carrying out computations that can be simulated in
polynomial time on a classical Turing machine. The moral is that the power of quan-
tum computation should be ascribed not only to the exponential parallelism in the
quantum system, but also to the fact that we can harness that computation despite
our noisy and inaccurate access to the system.

2. Quantum circuits with approximate gates

Consider a quantum circuit that operates on n qubits and consists of a sequence
of m elementary quantum gates. Then this circuit applies a sequence of m unitary
transformations U1, . . . , Um to some initial state vector |φ0〉 ∈ C2n . How sensitive is
the output of the circuit to perturbations in the transformations carried out by the
gates? For example, consider an elementary gate that performs a rotation through θ
on a single quantum bit. The unitary transformation on the single bit is given by(

cos θ sin θ
sin θ − cos θ

)
,

and therefore the unitary transformation on C2n is given by(
cos θ sin θ
sin θ − cos θ

)
⊗ I,

where I is the identity matrix on C2n−1
. In any implementation of this rotation gate,

we have to allow for some imprecision in achieving the desired angle θ, and must
assume that the actual gate that is implemented achieves some rotation θ′ where
|θ′ − θ| 6 δθ. The corresponding unitary transformation U ′ satisfies ‖U − U ′‖ 6
δθ†. How severely is the output of the circuit changed if each Uk is replaced by a
perturbation Vk such that ‖Vk − Uk‖ 6 δ?

Denote by |φk〉 the state of the n qubits after the application of the first k gates.
Let us start by considering the change in the final state vector |φm〉 in the special case
that only one of the gates, say the kth one, is perturbed. In this case, the state of the
n qubits after the perturbed kth gate is |φ′k〉 = Vk|φk−1〉 instead of |φk〉 = Uk|φk−1〉.
Therefore the error after the kth step is |φ′k〉−|φk〉 = (Vk − Uk)|φk−1〉. How do these
two state vectors (and therefore the error) evolve under the action of the remaining
gates in the circuit. The key point is that unitary evolution preserves dot product,
and therefore the norm of the error vector is preserved by the subsequent gates in

† The norm of a linear operator A is

‖A‖ def= max
v:‖v‖=1

‖Av‖.
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the circuit. Therefore the norm of the final error vector is ‖(Vk − Uk)|φk−1〉‖ 6
‖Vk − Uk‖ 6 δ.

The formal content of the previous paragraph can be expressed in the following
calculation. Let |ψ〉 = Um . . . U1|φ0〉 and let |ψ′〉 = Um . . . Uk+1VkUk−1 . . . U1|φ0〉.
Then

‖|ψ′〉 − |ψ〉‖ = ‖Um . . . Uk+1UkUk−1 . . . U1|φ0〉 − Um . . . Uk+1VkUk−1 . . . U1|φ0〉‖
= ‖Um . . . Uk+1(Uk − Vk)Uk−1 . . . U1|φ0〉‖
= ‖(Uk − Vk)|φk−1〉‖
6 ‖Vk − Uk‖.

Notation. Denote by D(ψ) the probability distribution that results from a mea-
surement of |ψ〉 in the computational basis.

The following lemma from Bernstein & Vazirani (1993, 1997) shows that a bound
on the norm of the final error vector can be directly translated into an upper bound
on the distance between the corresponding output distributions. Here the distance
between two distributions is the 1-norm or the total variation distance.

Lemma 2.1. If ‖|ψ′〉 − |ψ〉‖ 6 ε, then ‖D(ψ′)−D(ψ)‖1 6 4ε.

Now consider the general case where each gate Uk is replaced by a perturbation
Vk such that ‖Uk − Vk‖ 6 δ.

We show that the contributions to the final error vector from these contributions
accumulate additively by a technique that cryptographers will recognize as a ‘hybrid
argument’. Consider a sequence of runs of the circuit; in the jth run, the last j
gates are accurate, but the first m− j gates are replaced by their perturbations (see
figure 1). Denote by |ψj〉 the final state vector on the jth run. Clearly, |ψm〉 is the
final state vector of the ideal circuit, and |ψ0〉 is the final state vector of the perturbed
circuit. The main point of this construction is that successive runs differ in only one
gate, and therefore we can bound the difference in their final state vectors as we did
above by the norm of the difference between the single perturbed transformation and
its accurate counterpart, and therefore by δ. Since |ψ0〉 − |ψm〉 can be expressed as
a sum of m such successive differences, we can use the triangle inequality to derive
the bound ‖|ψ0〉− |ψm〉‖ 6 mδ. Finally, appealing to lemma 2.1, if δ 6 ε/(4m), then
the output distribution of the ideal and the perturbed circuit differ by at most ε.

Theorem 2.2. If the gates of a quantum circuit U1, . . . , Um are replaced by per-
turbations V1, . . . , Vm such that ‖Uk−Vk‖ 6 ε/(4m), then the output distribution of
the perturbed circuit is within ε (in 1-norm) of the output distribution of the ideal
circuit.

3. A lower bound for quantum search

In the oracle model, the quantum algorithm is given access to an oracle A : {0, 1}∗ →
{0, 1}. Think of A as a subroutine that the quantum algorithm can invoke, but
one whose underlying program it is not allowed to see. For simplicity, we assume
that each oracle access counts as one step of computation. Consider the follow-
ing problem: on input 1n (n in unary notation), is there an x of length n such
that A(x) = 1? This problem is clearly in the class NP relative to the oracle A,
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step
1 V1 V1 V1 V1 V1 V1 U1
2 V2 V2 V2 V2 . . . V2 U2 U2
3 V3 V3 V3 V3 U3 U3 U3
...

... . . .
...

m− 2 Vm−3 Vm−3 Vm−3 Vm−2 Um−2 Um−2 Um−2
m− 2 Vm−2 Vm−2 Vm−2 Um−2 Um−2 Um−2 Um−2
m− 1 Vm−1 Vm−1 Um−1 Um−1 . . . Um−1 Um−1 Um−1
m Vm Um Um Um Um Um Um

result |ψ0〉 |ψ1〉 |ψ2〉 |ψ3〉 . . . |ψm−2〉 |ψm−1〉 |ψm〉
Figure 1. The hybrid argument.

since a yes answer can be verified by a single probe into A (together with a trivial
check). In this section, we show that this problem cannot be solved in asymptot-
ically less than 2n/2 steps by any quantum algorithm with bounded error. Thus
NPA 6⊆ BQTIME(o(2n/2))A. The actual results of Bennett et al . (1997) on which
this section is based are somewhat stronger. They show that that relative to a ran-
dom oracle, NP 6⊆ BQTIME(o(2n/2)). They also show that relative to a random
permutation oracle NP∩ co-NP 6⊆ BQTIME(o(2n/3)).

How significant are these oracle results in view of the recent non-relativizing results
in complexity theory, such as IP = PSPACE (Shamir 1990), and NP = PCP(logn, 1)
(Arora et al . 1992). Arora et al . (1994) formalize the folk notion that any result in
complexity theory that is proved using only simulation and diagonalization argu-
ments holds relative to all oracles. However, they also pointed out that there is one
non-relativizing technique in complexity theory, namely the Cook–Levin theorem
(Cook 1971; Levin 1973). The non-relativizing form of the Cook–Levin theorem says
that any language with a polynomial-time checkable proof of membership also has
a log space checkable proof of membership. Arora et al . (1994) also argue that all
the recent non-relativizing results in complexity theory depend upon the (promi-
nent) use of the Cook–Levin theorem in their proof. In view of this, we can conclude
that the results in Bennett et al . (1997) indicate that there are two ways to design a
polynomial-time quantum algorithm for NP (or NP∩ co-NP). (a) By using the Cook–
Levin theorem in an essential way in the design of the algorithm. This appears quite
challenging since it requires some relationship between the computational resources
required for checking a proof of membership and quantum algorithms. (b) By design-
ing a new non-relativizing technique. Complexity theorists have been searching for
such techniques for the last two decades with no success.

Lower bounds in the oracle model are invariably proved by establishing the desired
bound on the number of queries to the oracle by the algorithm, independent of the
actual amount of computation performed by the algorithm between queries. This
motivates the following model. In the quantum analogue of the black-box or Boolean
decision tree model, the only cost associated with a quantum algorithm is the number
of accesses to the input. All other computation is free. Thus if the input to the
algorithm is x ∈ {0, 1}n, then a query of the form

∑n
j=1αj |j〉 results in the state∑n

j=1αj |j〉|xj〉. In this section we show a lower bound of Ω(
√
n) in the black-box
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model for the problem of deciding whether or not the input string x is equal to 0n.
This implies a similar bound for the search problem: find j such that xj = 1. This
is tight up to constant factors because Grover’s algorithm shows how to perform
quantum search in O(

√
n) steps. A tight bound on the constants was given by Boyer

et al . (1996).

Sensitivity to perturbation. Fix a quantum algorithm A. All the definitions
and discussion that follow are with respect to this fixed algorithm A. Recall that the
state ofA between successive queries can be written as |φ〉 =

∑
c αc|c〉, where c ranges

over all computational basis states (the possible classical states of the memory).
Now, during the query, each such computational basis state c probes a particular bit
position. The following definitions are motivated by the question: how sensitive is
the output of A to the modification of the input in a few bit positions?

Definition. The query magnitude at bit position j of |φ〉 =
∑
cαc|c〉 is defined

to be qj(|φ〉) =
∑
c∈Cj |αc|2, where Cj is the set of all computational basis states c

that query bit position j.

Assume that A runs for m steps on inputs of length n. Fix an input x ∈ {0, 1}n.
The run of A on input x can be described by a sequence of states |φ0〉, . . . , |φm〉,
where |φk〉 is the state of A just before the k + 1st query.

Definition. The query magnitude at bit position j of A on input x is defined to
be qj(x) =

∑m−1
k=0 qj(|φk〉).

It is tempting to think of qj(x) as the probability that A probes bit position j
and therefore conclude that it provides an upper bound on the probability that the
output of A changes if xj is flipped. Of course this is nonsense since there are no
probabilities during the execution of the algorithm, just probability amplitudes that
might interfere constructively or destructively. Nevertheless, we will show that if the
total query magnitude of bit position j is very small, then A cannot distinguish
whether the input x is modified by flipping its jth bit.

Given two strings x, y ∈ {0, 1}n, denote by ∆(x, y) the set of bit positions at which
x and y differ. i.e. ∆(x, y) = {j : xj 6= yj}.

Lemma 3.1 (Swapping lemma). Let |φx〉 and |φy〉 denote the final states of A
on inputs x and y, respectively. Then

‖|φx〉 − |φy〉‖ 6
√
m

∑
j∈∆(x,y)

qj(x).

Proof . The proof is by a hybrid argument. We compare a run of A on input x
with a run on input y by defining a sequence of hybrid runs. In the kth hybrid run,
the first k queries of A are answered according to input x, and the remaining m− k
queries are answered according to input to y. Denote by |φk,t〉 the state of the kth
run of A just before the t + 1st query. Of course |φk,0〉 = |φ0〉 for all runs k, and
|φm,m〉 = |φx〉 and |φ0,m〉 = |φy〉.

Let us compare the final states of two successive hybrid runs. The final state of the
kth run is |φk,m〉, and the final state of the k + 1st run is |φk+1,m〉. Clearly the first
k steps of the kth and k + 1st runs are identical, since in each case the queries are
answered according to the input x. Therefore |φk,k〉 = |φk+1,k〉 = |φk〉. Now the k+1st
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query on the kth hybrid run is answered according to input x, whereas on the k+1st
hybrid run it is answered according to input y. Since in each case the state of A while
making the query is |φk〉, and since x and y differ only on bit positions j ∈ ∆(x, y), it
follows that ‖|φk,k+1〉−|φk+1,k+1〉‖2 6

∑
j∈∆(x,y)qj(|φk〉). The remaining queries are

answered according to input y in both hybrid runs. Therefore, since unitary evolution
preserves dot product, we have that ‖|φk,k+1〉 − |φk+1,k+1〉‖ = ‖|φk,m〉 − |φk+1,m〉‖.
Now by the triangle inequality,

‖|φx〉 − |φy〉‖ = ‖|φm,m〉 − |φ0,m〉‖
6
∑
k

‖|φk+1,m〉 − |φk,m〉‖

6
∑
k

√ ∑
j∈∆(x,y)

qj(|φk〉)

6
√
m

√∑
k

∑
j∈∆(x,y)

qj(|φk〉)

=
√
m

√ ∑
j∈∆(x,y)

∑
k

= qj(|φk〉)

=
√
m

√ ∑
j∈∆(x,y)

qj(x).

�

Corollary 3.2. If
∑
j∈∆(x,y) qj(x) 6 ε2/m then ‖|φx〉 − |φy〉‖ 6 ε.

Theorem 3.3. Any quantum algorithm with error probability bounded by 1
3 ,

must make at least 1
12
√
n queries to decide whether or not its input is 0n.

Proof . Suppose that algorithm A solves this problem in m queries. Consider a
run of A on input x = 0n. Then the query magnitude of bit position j is qj(x).
Notice that if j is chosen uniformly at random, then the expected value of this
query magnitude, E[qj(x)] = m/n. Let y be the n-bit string with a single 1 in the
jth bit position (i.e. y = 0j−110n−j . Therefore by the swapping lemma, the norm
of the difference between the final state vectors on input x and y can be bounded
by ‖|φx〉 − |φy〉‖ 6

√
m
√
m/n = m/

√
n. Now if m < 1

12
√
n then by lemma 2.1,

|D(φx) − D(φy)|1 < 1
3 . Since this contradicts the bound on the error probability of

A, it follows that m > 1
12
√
n. �

Corollary 3.4. There is an oracle A such that NPA 6⊆ BQTIME(o(2n/2))A

Note. The proof of corollary 3.4 follows easily from theorem 3.3, and standard
diagonalization arguments from complexity theory. Therefore we omit its proof.

4. Block sensitivity and the black-box model

In this section we continue to work in the black-box model. Recently, Beals et al .
(1998) introduced a new framework, involving polynomials, for establishing lower
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bounds in the black-box model; they proved a general result showing that D(f) =
O(Q(f)6). We sketched a proof of this result. First let us define D(f) and Q(f).

For a Boolean function f : {0, 1}n → {0, 1}, denote by Q(f) the quantum com-
plexity of computing f with error probability at most 1

3 in the black-box model, i.e.
Q(f) is the minimum number of queries to the input, x, that a quantum algorithm
must make to compute f(x) with error probability at most 1

3 .
Denote by D(f) the deterministic complexity of f in the black-box model, i.e. the

minimum number of bits of the input that a deterministic algorithm must query to
compute f .

Denote by C(f) the certificate complexity or the non-deterministic complexity of
f in the black-box model, i.e. the minimum number of bits of the input that must
be revealed (by someone who knows all the input bits) to convince a deterministic
algorithm about the value of f(x).

A key result, that was first discovered by Blum & Impagliazzo (1987), shows that in
the black-box model the deterministic and non-deterministic (certificate) complexity
of a function are polynomially related. Recall that in the black-box model we only
count the number of queries made by the algorithm, not the number of steps of
computation performed by the algorithm between queries. In fact, the C(f)2 upper
bound on the deterministic complexity is established by giving an algorithm that
requires 2C(f) steps of computation, but only C(f)2 queries.

Lemma 4.1 (Blum & Impagliazzo 1987). C(f) 6 D(f) 6 C(f)2.

Nisan (1989) established another fundamental result, that shows that the black-
box complexity of a Boolean function f is closely related to a structural property of
f called its block sensitivity. To define this notion, we need some notation.

Notation. For a string x ∈ {0, 1}n, and a set S =⊆ {1, 2, . . . , n}, define x(S)

to be the boolean string y that differs from x = on exactly the bit positions in the
set S.

Definition. For a Boolean function f : {0, 1}n → {0, 1} the block sensitivity
of f , bs(f) is defined to be the maximum number t such that there exists an input
x ∈ {0, 1}n and t disjoint subsets S1, . . . St ⊆ {1, 2, . . . , n} such that for all 1 6 i 6 t,
f(x) 6= f(x(Si)).

Lemma 4.2 (Nisan 1989).
√
C(f) 6 bs(f) 6 C(f).

Corollary 4.3. bs(f) 6 C(f) 6 D(f) 6 C(f)2 6 bs(f)4.

Beals et al . (1998) improve this bound by showing:

Lemma 4.4. D(f) 6 C(f)bs(f) 6 bs(f)3.

We are now ready to prove the main result of this section.

Theorem 4.5. Q(f) > 1
12

√
bs(f).

Proof . Let x ∈ {0, 1}n be the string such that there exist t = bs(f) disjoint subsets
S1, . . . St ⊆ {1, 2, . . . , n} such that for all 1 6 i 6 t, f(x) 6= f(x(Si)). Given a quantum
algorithm A let us define the query magnitude of set S ⊆ {1, 2, . . . , n} on input x to
be qS(x) =

∑
j∈Sqj(x). Now if A runs for m steps, then since the sets Si are disjoint,

the expected query magnitude for a random set Si is qSi(x) 6 m/bs(f). Let y = x(Si).
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On the power of quantum computation 1767

Therefore by the swapping lemma, the norm of the difference between the final state
vectors on input x and y can be bounded by ‖|φx〉 − |φy〉‖ 6

√
m
√
m/t = m/

√
t.

Now if m < 1
12
√
n then by lemma 2.1, |D|φx〉 − D|φy〉|1 < 1

3 . Since this contradicts
the bound on the error probability of A, it follows that m > 1

12
√
n. �

Corollary 4.6. Q(f) > 1
12D(f)1/6. Therefore D(f) = O(Q(f)6).

I thank Leonard Schulman for his insightful comments on a draft of the paper. The author was
supported by a JSEP grant.
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Discussion

P. Marcer (BCS Cybernetic Machine Group, Keynsham, UK ). If quantum theory
is regarded as a Lie transformational system (as it is in relation to quantum holog-
raphy), then the natural diffeomorphism, an exponential mapping, always has an
analytic inverse. Quantum complexity theory is therefore in principle and via pat-
tern matching or image processing able to deal with exponential towers of complexity
in polynomial or even real time.

U. Vazirani. To properly evaluate the costs of quantum computation, we must
consider a discrete model of computation. In such a model, quantum computers
have at most an exponential factor complexity advantage over classical computers.
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